Toward Manifold-Adaptive Learning

نویسندگان

  • Amir massoud Farahmand
  • Csaba Szepesvári
  • Jean-Yves Audibert
چکیده

Inputs coming from high-dimensional spaces are common in many real-world problems such as a robot control with visual inputs. Yet learning in such cases is in general difficult, a fact often referred to as the “curse of dimensionality”. In particular, in regression or classification, in order to achieve a certain accuracy algorithms are known to require exponentially many samples in the dimension of the inputs in the worst-case [1]. The exponential dependence on the input dimension forces us to develop methods that are efficient in exploiting regularities of the data. Classically, smoothness is the best known example of such a regularity. In this abstract we outline two methods for two problems that are efficient in exploiting when the data points lie on a low dimensional submanifold of the input space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Curvature-based Manifold Learning Algorithm

Manifold learning aims to find a low dimensional parameterization for data sets which lie on nonlinear manifolds in a high-dimensional space. Applications of manifold learning include face recognition, image retrieval, machine learning, classification, visualization, and so on. By studying the existing manifold learning algorithms and geometric properties of local tangent space of a manifold, w...

متن کامل

A completed adaptive de-mixing algorithm on Stiefel manifold for ICA

Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directl...

متن کامل

Boosting on Manifolds: Adaptive Regularization of Base Classifiers

In this paper we propose to combine two powerful ideas, boosting and manifold learning. On the one hand, we improve ADABOOST by incorporating knowledge on the structure of the data into base classifier design and selection. On the other hand, we use ADABOOST’s efficient learning mechanism to significantly improve supervised and semi-supervised algorithms proposed in the context of manifold lear...

متن کامل

آموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک

In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

An Adaptive Neighborhood Graph for LLE Algorithm without Free-Parameter

Locally Linear Embedding (LLE) algorithm is the first classic nonlinear manifold learning algorithm based on the local structure information about the data set, which aims at finding the low-dimension intrinsic structure lie in high dimensional data space for the purpose of dimensionality reduction. One deficiency appeared in this algorithm is that it requires users to give a free parameter k w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007